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Abstract

Recently, there has been growing interest in genome sequencing, driven by
advances in sequencing technology, in terms of both efficiency and afford-
ability. These developments have allowed many to envision whole-genome
sequencing as an invaluable tool for both personalizedmedical care and pub-
lic health. As a result, increasingly large and ubiquitous genomic data sets are
being generated.This poses a significant challenge for the storage and trans-
mission of these data. Already, it is more expensive to store genomic data for
a decade than it is to obtain the data in the first place. This situation calls
for efficient representations of genomic information. In this review, we em-
phasize the need for designing specialized compressors tailored to genomic
data and describe the main solutions already proposed. We also give gen-
eral guidelines for storing these data and conclude with our thoughts on the
future of genomic formats and compressors.
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1. INTRODUCTION

In the year 2000, US President Bill Clinton declared the success of the Human Genome Project
(1), calling it “the most important, most wondrous map ever produced by humankind” (2). This
was at the end of a project that took almost 13 years to complete and cost $3 billion (around
$1 per base pair).

Fortunately, sequencing cost has drastically decreased in recent years. While in 2004 the cost
of sequencing a whole human genome was around $20 million, in 2008 it dropped to $1 million,
and in 2015 to a mere $1,000 (see Figure 1). This decrease in cost, together with advances in se-
quencing technology, has allowed the field of personalized medicine to rapidly develop, enabling
the design of individualized paths to help patients mitigate risks, prevent disease, and treat it ef-
fectively when it occurs. As a result, massive amounts of genomic data are being generated. At the
current rate of growth (sequencing data are doubling approximately every seven months), more
than an exabyte of sequencing data per year will be produced, approaching zettabytes by 2025 (3).

Often these data are unique, in that the samples are not available for resequencing. Moreover,
the tools that are used to process and analyze the data improve over time, and thus it will likely be
beneficial to revisit and reanalyze the data in the future.For these reasons among others, long-term
storage with convenient retrieval is required. In addition, the acquisition of the data is highly dis-
tributed, which demands a large bandwidth to transmit and access large quantities of information
through the network.This situation calls for state-of-the-art, efficient compressed representations
of massive biological data sets, which not only can alleviate the storage requirements but also can
facilitate the exchange and dissemination of these data. In addition, compression schemes exploit
the redundancy and the underlying structure of the data; hence, the specialized compressors for
genomic data can discover hidden structure, which can then be used for analysis or can give insight
into the nature of the genome.

This undertaking is of paramount importance, as the storage and acquisition of the data are
becoming a major bottleneck, as evidenced by the recent flourishing of cloud-based solutions
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Figure 1

Overview of the decrease in sequencing cost. As can be observed, the rate of this price drop is surpassing
Moore’s law. Data from Reference 4.
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Library preparation 
(and amplification)

Output: FASTQ fileSequence fragments in parallel 
(next-generation sequencing)

Input: genomic DNA

Figure 2

Short-read next-generation sequencing (NGS) technologies require a library preparation of the DNA
sample, which is preceded by a DNA preprocessing step that includes cutting the DNA into small fragments.
These are then used as input into the sequencing machine, which performs the sequencing in parallel.

enabling processing data directly in the cloud. For example, companies such as DNAnexus (http://
www.dnanexus.com), GenoSpace (http://www.genospace.com), Genome Cloud (http://www.
genome-cloud.com), and Google Genomics (https://cloud.google.com/genomics), to name a
few, offer solutions to perform genome analysis in the cloud.

Most of the genomic data being stored and analyzed to date comprise sequencing data pro-
duced by next-generation sequencing (NGS) technologies, with short-read technology being the
most prominent. These technologies require some level of DNA processing and library prepara-
tion suitable for sequencing (see Figure 2). As a consequence, instead of the whole genome se-
quence, NGS short-read technologies produce a collection of millions of small fragments termed
reads, which can be thought of as strings randomly sampled from the sequenced genome (see
Figure 3). For most technologies, the length of these reads is of a few hundred base pairs, which
is generally significantly smaller than the genome itself (e.g., a human genome is composed of
around 3 × 109 base pairs).

To account for the possible mistakes in the readout of the sequencing signal, sequencers gener-
ate, in addition to the reads (i.e., the nucleotide sequences), quality scores that reflect the level of
confidence in the readout of each base. The raw sequencing data are therefore mainly composed
of the reads and the quality scores and are stored in the widely accepted FASTQ format.Today, the
latest sequencing systems can sequence in a single run the equivalent to 48 whole human genomes
at 30× coverage. This accounts for 20 billion paired-end reads of length 2 × 150, or equivalently,
6 TB of FASTQ files (5).

The raw sequencing data typically undergo the analysis pipeline depicted in Figure 4. First,
the reads contained in the FASTQ file are aligned to a reference genome. In brief, the alignment
process infers, for each read, the corresponding location in the reference sequence from which
that read was generated (or that no such region exists). In addition to the mapping location, the

Genome

Reads

Coverage

ACCTGGCCTTAAAGCCCCTAGACCGTGTACAACCTGACACT

Figure 3

The reads output by the sequencing machine (blue) correspond to fragments of the genome. The coverage
indicates the number of reads on average that were generated from a random location of the genome.
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Reference genome Reference genome

FASTQ file SAM file VCF file

Alignment Variant caller

Figure 4

The typical analysis pipeline for genome sequencing. It consists of aligning the reads to a reference
sequence, followed by some postprocessing of the aligned file. Then variant calling is performed to find the
biological variants with respect to the reference sequence. The input to the pipeline is typically a FASTQ file
containing the raw data, and the output is a VCF file containing the found variants. Abbreviations: SAM,
sequence alignment map; VCF, variant call format.

alignment also generates the mismatching information, if any, together with some extra fields.
This alignment information, together with the original reads and quality scores, is stored in the
SAM (sequence alignment map)/BAM (binary alignment map) format (6) (BAM is the binarized
and compressed version of the SAM file). These files, which are heavily used by most downstream
applications, are extremely large—typically hundreds of gigabytes (for a 30× human genome).

After the alignment, variant calling is performed, which seeks the variants (discrepancies) be-
tween the original genome and the reference sequence used for alignment. These variants are
normally due to single-nucleotide polymorphisms (SNPs) (i.e., a single nucleotide variation) and
insertions and deletions (termed INDELs). The set of called variants, together with some extra
information such as the quality of the call, are stored in a VCF (variant call format) file (7). For
human genomes, a VCF file may contain around three million variants,most of them due to SNPs
(two human genomes are about 99.9% identical). The size of this file is on the order of a giga-
byte. With the information contained in the VCF file, the original genome can potentially be
reconstructed (this process is called assembly), yielding the assembled genome.

Ideally, it would suffice to store just the VCF file, as it contains all the relevant information
regarding the sequenced genome, hence eliminating the need for storing the intermediate FASTQ
and SAMfiles, which are generally prohibitively large.However, as already outlined above, several
reasons make this impossible. For example, the alignment tools and variant calling programs keep
improving over time, and thus reanalyzing the raw data can yield new variants that were initially
undetected. Thus, there is a pressing need for compressing these files to ease the storage and
transmission of the data.

Although there are general-purpose compression schemes like gzip (http://www.gzip.org),
bzip2 (http://www.bzip.org), and 7zip (http://www.7zip.org) that can be directly applied to
any type of genomic data, they do not exploit the particularities of these data, yielding relatively
low compression gains (8–10). With this gap in compression ratios in mind, several specialized
compression algorithms have been proposed in recent years. These algorithms can be classified
into two main categories: (a) compression of raw NGS data (namely FASTQ and SAM files) and
(b) compression of assembled genomes.

In the following review,we revisit themain algorithms proposed in both of these categories and
give some guidelines about how the data should be stored.We conclude with thoughts on the fu-
ture of genomic formats and compressors, including the upcoming standard for efficient genomic
information representation, named MPEG-G, which is being developed under the umbrella of
ISO (International Organization for Standardization).
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Figure 5

Example of a FASTQ file entry corresponding to a read of length 28 and quality scores in the scale Phred+33.

2. COMPRESSION OF RAW SEQUENCING DATA

The raw sequencing data are stored in the FASTQ format,widely accepted as a standard for storing
sequencing data. FASTQfiles consist of separate entries for each read, each consisting of four lines
(see Figure 5 for an example). The first line contains the identifier, the second line contains the
nucleotide sequence (i.e., the read itself ), the third line generally contains only the character +,
and the last line contains the quality scores (there is a quality score per nucleotide in the read).The
quality scores are represented with ASCII characters in the FASTQ file. Specifically, the quality
score Q is the integer mapping of P (the probability that the corresponding base call is incorrect),
and it is usually represented in the Phred scale (11), given by �Q = −10 log10 P�. Different NGS
technologies use different scales, Phred+33 being the most common one, which corresponds to
values of Q in the range from 33 to 73.

Compression of the raw sequencing data therefore involves compression of the identifiers,
the reads, and the quality scores. However, there has been more interest in the compression of the
reads and the quality scores, as they takemost of the space and carry themost relevant information.
Figure 6 shows a time line with the algorithms proposed for compression of entire FASTQ files,
as well as those that focus only on the compression of the reads or the quality scores. In what
follows we focus our attention to the best performing tools.

Recently, there has been a boost in the compression ratio of the reads by reordering them prior
to compression. The reads are stored in the FASTQ file in no particular order; hence, in princi-
ple, one can think of them as a set rather than as an ordered list. In addition, the original order
is usually irrelevant to later analysis and so is safe to discard. Nevertheless, this can be regarded
as a form of lossy compression, since the original data are not recovered exactly. The main gain
comes from reordering reads by similarity, such that reads are efficiently represented based on
their predecessors. Algorithms that exploit reordering of the reads include, but are not limited to,
ORCOM (26),MINCE (34), SCALCE (17), BEETL (16), and HARC (42). Among these,HARC
offers the best compression performance, followed by ORCOM. In particular, HARC compresses
the nucleotide sequences of Homo sapiens data of 13× coverage from 42 GB (uncompressed) to
1.5 GB. As coverage increases, better gains are obtained. For example, 50× data are compressed
from 167 GB to 2.9 GB, and 107× data from 349 GB to 4.1 GB (see Reference 42 for details).
These results correspond to a 1.7× improvement over ORCOM on average. Finally, FaStore
(50) and SPRING (49) are full FASTQ file compressors whose read compressors improve upon
ORCOM and HARC, respectively (see the sidebar titled FASTQ File Compressors).

Due to their higher entropy and larger alphabets, quality scores have proven more difficult to
compress than the reads. In addition, there is evidence that quality scores are inherently noisy,
and downstream applications that use them do so in varying heuristic manners. As a result, lossy
compression of quality scores (as opposed to lossless) has emerged as a candidate for boosting
compression performance, at a cost of introducing some distortion (i.e., the reconstructed quality
scores may differ from the original ones). Dedicated quality value compressors are marked with
red boxes in Figure 6. The best performing algorithms in this category are QVZ (32, 39), Quartz
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2010 2011 2012 2013 2014 2015 2016 2017 2018

SPRING 
(Chandak et al. 2018) 

FaStore
(Roguski et al. 2018) 

QScomp  
(Voges et al. 2018) 

QVZ2  
(Hernaez et al. 2016)  

AQUa  
(Paridaens et al. 2017b)

ALL-CQS  
(Fu & Dong 2017) 

BIC
(Wang et al. 2017) 

AFRESh 
(Paridaens et al. 2017a) 

LCTD 
(Fu et al. 2016)  

DARRC 
(Holley et al. 2017) 

LW-FQZip2 
(Huang et al. 2017) 

HARC 
(Chandak et al. 2017) 

KIC 
(Zhang et al. 2016) 

GeneCodeq  
(Greenfield et al. 2016) 

CROMqs  
(Ochoa et al. 2016)

FQC 
(Dutta et al. 2015) 

LFQC 
(Nicolae et al. 2015)  

MINCE 
(Patro & Kingsford 2015) 

LW-FQZip 
(Zhang et al. 2015) 

LEON 
(Benoit el al. 2015) 

kpath 
(Kingsford & Patro 2015) 

QVZ 
(Malysa el al. 2015)

Quartz 
(Yu et al. 2015)

RQS 
(Yu et al. 2014)

P/R-block 
(Cánovas et al. 2014)

ORCOM
(Grabowski et al. 2014)

DSRC2
(Roguski & 

Deorowicz 2014)

MFCompress
(Pinho & Pratas 2013)

QualComp 
(Ochoa et al. 2013)

FRESCO
(Wandelt & Leser 2013)

SeqDB
(Howison 2013)

Fastqz
(Bonfield & 

Mahoney 2013)

Fqzcomp
(Bonfield & 

Mahoney 2013)

Quip
(Jones et al. 2012)

BEETL
(Cox et al. 2012)

SCALCE
(Hach et al. 2012)

DELIMINATE
(Mohammed et al. 2012)

Log/UniBinning 
(Wan et al. 2012)

Recoil
(Yanovsky 2011)

DSRC
(Deorowicz & 

Grabowski 2011)

GenCompress
(Daily et al. 2010)

G-SQZ
(Tembe et al. 2010)

FASTQ
(Cock et al. 2010)

Figure 6

A time line of the proposed methods for compression of FASTQ files. Some of the methods focus on the compression of the unaligned
sequences (reads) or the quality scores, rather than on the whole FASTQ file. Red boxes denote dedicated methods for the compression
of quality values from unaligned data.

(36) and P/R-block (25). In addition,QVZ is the only algorithm in this category that also provides
lossless compression. It requires significantly less memory than Quartz, and it is able to operate
at any point in the rate distortion curve, making it the preferred compressor for quality scores in
state-of-the-art FASTQ file compressors. QVZ models the quality scores as a Markov model of
order one and generates a codebook composed of several quantizers optimized for the computed
empirical statistics. In particular, there are as many quantizers as positions in the read, and each
quality score is quantized using as context the previous quantized quality score within the same
read. This design choice comes from the realizations that quality scores are highly correlated with
neighboring positions, and that quality scores tend to deteriorate at the end of the read. Finally,
the quantized quality scores are encoded by means of an adaptive arithmetic encoder, using the
appropriate models. By tuning the lossyness of the algorithm, QVZ is able to operate everywhere
from lossless to almost zero bits per quality score.

Traditionally, lossy compressors have been analyzed in terms of their rate distortion perfor-
mances. Such an analysis provides a yardstick for comparing lossy compressors of quality scores
that is oblivious to the multitude of downstream applications, which use the quality scores in dif-
ferent ways. However, the data compressed are used for biological inference. Researchers are thus
interested in understanding the effect that the distortion introduced in the quality scores has on
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FASTQ FILE COMPRESSORS

Among complete FASTQ file compressors, FaStore (50) and SPRING (49) are currently the state of the art, with
the latter offering better compression performance, as well as more compression modes. Although both algorithms
deliver their best performance when the reads are reordered, SPRING also supports lossless compression (hence
allowing the original ordering of the reads to be recovered). FaStore employs an improved version of ORCOM
(26) for compression of the reads, whereas SPRING is based on HARC (42). For quality score compression, Fa-
Store supports QVZ (32) as well as binary thresholding and Illumina’s proposed binning, in which quality scores
are quantized to eight values. SPRING supports the same lossy modes, with the only difference being that once
the quality scores are quantized (with any of the above methods), the quantized values are encoded by means of
BSC (block sorting compression; https://github.com/IlyaGrebnov/libbsc) rather than by an arithmetic encoder.
Finally, both algorithms support discarding the identifiers at the time of compression and storing only the infor-
mation pertaining to the pairing information. When losslessly compressed, the identifiers are tokenized, and each
token is compressed based on the previous identifier (to exploit the redundancy across them) and encoded by means
of an adaptive arithmetic encoder.

Both algorithms recommend discarding the original order of the reads, applying quantization to the quality
scores, and retaining only the pairing information of the identifiers. The reason is that this is generally the infor-
mation needed by most of the genomic applications such as alignment, assembly, or variant calling. In this mode
of operation, FaStore and SPRING compress 195 GB of 25× whole-genome human FASTQ data from Illumina’s
NovaSeqTM 6000 sequencer to 10 GB and 5.6 GB, respectively. A similar file but with 100× coverage is compressed
from 787 GB to 20 GB by SPRING, around 1.4 times smaller than the FASTQ compressor FaStore. SPRING
achieves this improvement while using comparable computational resources. For example, the 25× FASTQ file is
compressed in about 2.5 h and decompressed in less than 1 h, using 30 GB of memory to compress and 12 GB to
decompress. FaStore is slightly faster, needing slightly less than 2 h to compress and about 15 min to decompress
(in the same machine), and it uses about 40 GB for both compression and decompression. Finally, in lossless mode,
SPRING compresses the above-mentioned data sets from 195 GB and 787 GB (uncompressed) to 7 GB and 26
GB, respectively.

the subsequent analysis performed on the data, rather than a more generic measure of distortion,
such as rate distortion.

With this in mind, there have been recent efforts and interest in obtaining a methodology to
analyze how lossy compression of quality scores affects the output of variant calling, one of the
most widely used downstream applications in practice.Not surprisingly, recent studies have shown
that lossy compression can significantly alleviate storage requirements while maintaining a variant
calling performance comparable—and sometimes superior—to the performance achieved using
the uncompressed data (see Reference 52 and the references therein).For example,QVZoperating
at less than one bit per quality score does not degrade the variant calling performance, but offers
more than 60% in savings as compared to lossless (39). This phenomenon can be explained by the
fact that the data are noisy, and current variant callers do not use the data in an optimal manner.
Following this trend, in their latest machines, Illumina is currently delivering quality scores with
an alphabet of just 8 or even 4 values (as opposed to 40).

3. COMPRESSION OF ALIGNED SEQUENCING DATA

Aligned sequencing data are stored in the widely accepted SAM format (6). The SAM format is
a tab-delimited text format consisting of a header section, which is optional, and an alignment
section. If present, the header must appear prior to the alignment section. Each alignment line
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@RG ID:NA12878 SM:NA12878
@PG ID:bwa PN:bwa VN:0.6.1-r104-tpx
HSQ04:1020 117 chr1 11 35 34M = 1 0 CGTGAGTGGTTAATAGGGTGATAGACCTGTGATC
DDDDDDDDDEEDDCDDDEEEEEEEEDFFFHHHHJ RG:Z:NA12878 NM:i:2
HSQ04:134 153 chr1 45 37 34M = 1 0 GATCACAGGTCTATCACCCTATTAACCACTCACG
EEEDDDDDDCCEDDB?DDCEEDCB>DCCDBBADD RG:Z:NA12878 XT:A:U NM:i:1 AM:i:0
HSQ04:2073 117 chr1 99 41 34M = 1 0 GAGCTCCCGTGAGTGGTTAATAGGGTGATAGACC
CDDDDDDDDCCC?DDDEEDEEDEFFDCFEHHHGH RG:Z:NA12878 XT:A:U

Figure 7

First lines of a SAM (sequence alignment map) file. After the header lines (those starting with @) comes the
alignment information for the reads, one per line.

has 11 mandatory fields and an arbitrary number of auxiliary fields. The mandatory fields include,
among others, the read (i.e., the sequence of nucleotides), the sequence of quality scores, and the
position where the read maps in the reference genome. For a comprehensive overview of the
format, we refer the reader to Reference 6. A snapshot of a SAM file is shown in Figure 7.

Compression of SAM files is especially pressing, as they are both the largest files (up to ter-
abytes) and the ones generally used in downstream applications. Moreover, the size of these files
conveys the major bottleneck for the transmission and handling of NGS data among researchers
and institutions; therefore, good compression algorithms are of primal need.

Currently these files are stored in the BAM (6) or CRAM format (53, 54). BAM was released
at the same time as its uncompressed counterpart, SAM. However, more than a specialized com-
pression algorithm, BAM is a binarization of the SAM file that uses general-purpose compression
schemes as its compression engine. CRAM, on the other hand, is a specialized compressor that is
experiencing a wider adoption. CRAM combines a reference-based compression of sequence data
with a data format that is directly available for computational use in downstream applications.
The first version of CRAM was published in 2011 (53), followed by a more specialized version
published in 2014 (54), coined CRAMv3. CRAMv4 is currently being developed ( J. Bonefield,
personal communication).

Since the first version of CRAM appeared, much effort has been devoted to designing com-
pression schemes for these data (see Figure 8 and the sidebar titled Compression of SAM Files).

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Crumble
(Bonfield et al. 2018)

Referee
(Filippova & 

Kingsford 2015)

BAM
(Li & Durbin 2009)

CRAM
(Fritz  et al. 2011)

NGC
(Popitsch & 

van Haesler 2012)

Samcomp
(Bonfield & 

Mahoney 2013)

Quip
(Jones  et al. 2012)

Goby
(Campagne et al. 2013)

Scramble
(Bonfield 2014)

CBC
(Ochoa et al. 2014)

DeeZ
(Hach et al. 2014)

CARGO
 (Roguski & Ribeca 2016)

CALQ
(Voges et al. 2017)

GeneComp
(Long et al. 2017)

CSAM
(Cánovas et al. 2016)

TSC
(Voges et al. 2016)

Figure 8

A time line of proposed methods for compression of SAM (sequence alignment map) files. Some of the methods are focused on
compression of the aligned sequences (reads) rather than on the whole SAM file. Red boxes denote dedicated methods for the
compression of quality values from aligned data.
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COMPRESSION OF SAM FILES

Several compressors for SAMfiles exist in the literature in addition to BAM andCRAMv3 (also known as Scramble),
with the main ones being Quip (18), DeeZ (58), and GeneComp (64) (see also Figure 8). The main advantage of
DeeZ over the other two methods is the support of random access, which allows selective access to the compressed
data. This feature may be important, especially as the coverage of the data grows. Most methods support some
type of lossy compression of quality values, ranging from simple binning (Scramble) to the more complex QVZ
(GeneComp).

Numanagić et al. (2016) offered a comparison of the main existing methods (except for GeneComp) in terms of
performance, both in compression ratio and speed (67). For example, a 589-GB SAM file of anH. sapiens sequenced
with an Illumina HiSeq 2500 at 50× can be further reduced to 121 GB (BAM), 66 GB (CRAMv3), 64 GB (Quip),
and 62 GB/53 GB (DeeZ/DeeZ+bzip2). In terms of speed,CRAMv3 is the fastest in both compression and decom-
pression, followed by DeeZ and Quip (BAM is generally faster at decompression). Regarding GeneComp, Long
et al. (2017) showed that it offers on average around 10% improvement in lossless compression with respect to
DeeZ (64). Finally, the compression time of GeneComp is comparable to that of DeeZ, whereas the decompression
is about two times slower.

Compression of the aligned genomic data can be divided into several subproblems of different
natures, namely, compression of the aligned reads, compression of the identifiers, compression of
the quality scores, and compression of the fields related to the alignment.

As expected, better compression ratios can be achieved when considering aligned reads (in
contrast to unaligned ones), as in that case only the differences with respect to the subsequence
of the reference to which they aligned need to be stored (8) (this scenario assumes the availability
of a reference genome for compression and decompression). These differences, together with the
reference sequence, suffice to reconstruct the read exactly. Hence proposed compression meth-
ods for aligned reads consist mainly in storing the position where the read maps in the reference,
together with the mismatching information. Schemes of this type include, but are not limited to,
Samcomp (8), Scramble (54), Quip (18), DeeZ (58), and GeneComp (64). The main differences
in performance across these methods come from how well they model the data at hand, and how
well each method is able to exploit the redundancy across reads. For example, GeneComp out-
performs Samcomp by noticing that reads mapping to the same region (locus) in the genome
generally share the same nucleotide differences with respect to the reference, and it uses this in-
formation inmodeling the data. Another approach to exploiting the redundancy across the aligned
reads is to obtain the consensus of the reads mapped to a specific locus and then encode the dif-
ferences between the consensus contigs and the reference genome. This is the approach used
by DeeZ (58). Exact comparison of the compression performance of the reads by the aforemen-
tioned methods is somewhat challenging, since they generally compress the entire SAM file and
may use different fields to reconstruct the corresponding reads. For example, Samcomp only com-
presses the necessary information to reconstruct a FASTQ file from the SAM file, and hence it
may discard the CIGAR (concise idiosyncratic gapped alignment report) string, whereas methods
such as GeneComp compress the CIGAR string even if it is not needed to reconstruct the read
itself.

Quality scores from aligned data have the same characteristics as those from the raw data,
and hence, they can be compressed with the same tools. However, when dealing with aligned
data, lossy compression of quality scores is even more appealing, since when they are losslessly
compressed they typically occupy most of the space in the compressed file (up to 70%) (8). The
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reason is that the reads can be better compressed, and hence they contribute less space to the
compressed file. Even though the lossy compressors designed for the raw data can be seamlessly
applied in this scenario, the use of the alignment information has proven to be beneficial in that
less degradation is observed in the subsequent variant calling. This is the case with CALQ (65),
which introduces an additional dimension to fine-tune quality score quantization in the case of
aligned data: The actual quantizer to be applied is chosen per genomic position (or locus). In
particular, given the readout nucleotides and quality values, CALQ computes the probabilities
of all possible genotypes for every locus covered by aligned reads. Then, using these genotype
probability distributions, CALQ computes a quantizer index per locus, which is used to select one
of the precomputed quantizers. Quantizers with low resolution will be chosen for loci at which
there is enough evidence for a specific genotype, given the readout bases and quality scores, and
vice versa. After some further processing, the quantizer indexes and the actual quantized quality
scores are compressed using an arithmetic encoder. A similar approach has been recently proposed
in Crumble (66).

Compression schemes designed for identifiers of FASTQ reads can be seamlessly applied to
the ones present in the SAM file. The main difference is that reads in the SAM file are generally
sorted by the position where they map in the reference, and as such, consecutive identifiers tend
to be less predictable than in the FASTQ file. Note, however, that this scenario is similar to the
case where the reads are reordered in the FASTQ file.

The final pieces to fully reconstruct a SAM file are the fields related to the alignment. These
include several compulsory fields such as the mapping quality, the position where the read maps
to the reference (POS), or the CIGAR string, which describes some operations needed to re-
construct the read from the reference genome, among others. Some of these fields may be re-
constructed from the read and the reference genome, such as the CIGAR string, and others are
normally included as part of the compression of the read, such as the POS. Other information
generally included as aligned data corresponds to the auxiliary fields, which are represented as
TAG:TYPE:VALUE. The number of auxiliary fields present in a SAM file can vary greatly, from
none to tens of them.

Compression of these data is done in different ways, from simply applying general compression
algorithms, such as gzip, to designing specialized models for each field that are then generally fed
into an arithmetic encoder. Other approaches include predicting the value of the corresponding
field based on already reconstructed data from the corresponding read, and then sending a flag
specifying if the prediction is correct or not (if not, the specific value is compressed). As expected,
this approach is valid only for some fields, like the ones related to the mismatching information,
such as the CIGAR string and some auxiliary fields.

4. RECOMMENDATION FOR STORAGE OF RAW AND ALIGNED
SEQUENCING DATA

As discussed in the above sections, several algorithms have been proposed for the compression
of the raw and aligned sequencing data. Generally these algorithms come with several options,
allowing the user to choose between different compression modes. These modes vary in terms of
compression ratio, compression and decompression speed,memory usage, and,more importantly,
what information is preserved in the reconstructed file. Navigating the different options may be
overwhelming, especially for users who are either not familiar with the compression setting or not
sure about the future use of the data being compressed.With that in mind, in this section we give
some guidelines about what we believe are best practices when it comes to the compression and
storage of raw and aligned genomic data.
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One of the main questions to ask is whether both the FASTQ and the corresponding SAM
file need to be stored. The SAM file can always be reconstructed from the FASTQ file as long
as the same alignment program, version, and reference sequence are used. Similarly, the FASTQ
file can be reconstructed from the SAM file, although in this case the original order of the reads
may not be recoverable (depending on whether the identifiers are kept lossless and whether they
were sorted alphabetically in the original FASTQ file). Additionally, the unaligned reads must be
contained in the SAM file, since otherwise they would be unrecoverable. Another caveat when
it comes to reproducibility of the results is that, as shown in References 68 and 50, a different
read order in the FASTQ file can produce downstream results that differ from the ones using
the original order. The reason is that current tools used for alignment and variant calling may be
affected by this ordering. For example, Firtina & Alkan observed a difference of more than 1% in
the variants called by the GATK best practice pipeline (68). Hence, when deciding which of the
two files to keep, or if both, one needs to think first about whether one file suffices to reconstruct
the other.

Another point to take into account is how the data will be used. For example, SAM files are
the ones used by most downstream analysis, and therefore, if the data have not been analyzed yet,
it would be advisable to keep the SAM file, since otherwise the alignment would need to be run
every time, which generally takes a prohibitively long time (especially when dealing with human
data). For archival purposes, on the other hand, we would advise storing the raw data, given that
its compressed representation is generally smaller than that of the corresponding SAM file, and
the latter can always be reconstructed.

Once it is decided which files need to be compressed, the next step is to decide which mode
of operation to use for compression. Is the full precision of the quality scores needed? Is there
any information from the identifiers needed other than the pairing information? Is the origi-
nal order of the FASTQ file important? The answers to these questions will mainly depend on
the future use of the data being compressed. For example, deciding whether lossy compression
of the quality scores is advisable will depend on whether the employed downstream applica-
tions use them and, even if they do, whether their performance gets affected by some loss in
precision.

Other aspects to take into account when deciding on the mode of operation are the memory
usage, the running times of each of the modes, and the final compressed size. Nevertheless, based
on our own experience, and as a general guideline, we recommend storing only one of the files
(either the FASTQ or the SAM file), retaining only the pairing information of the identifiers,
discarding the original order of the reads, and applying some controlled loss in the compression
of the quality scores. For the latter, it has been shown that a rate of one bit per quality score has
no meaningful effect on variant calling while yielding substantial storage savings (52, 69). Finally,
we recommend performing the above-mentioned compression-saving steps prior to the analysis
to ensure full reproducibility of the results.

5. COMPRESSION OF WHOLE GENOMES

As sequencing technologies advance, more genomes are expected to be sequenced and assembled
in the near future. Hence there is a need for compression of genomes that is guaranteed to per-
form well simultaneously on different species, from bacteria to humans, and that can ease their
transmission, dissemination, and analysis.

Several compression algorithms for assembled genomes have been proposed in the last two
decades. These can be divided into two main categories, those that use a reference genome to aid
compression, and those that do not. Not surprisingly, algorithms in the former category achieve
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better compression than those in the latter. The reason is that reference-based compressors can
exploit the similarities across genomes of the same species.

Interest in reference-based compression started to rise in 2009 with the publication of DNAzip
(70) and the proposal from Brandon et al. (71). With DNAzip, Christley et al. (70) compressed
the genome of James Watson ( JW) to a mere 4 MB based on the mapping from the JW genome
to a human reference, using a public database of the most common SNPs in humans. Pavlichin
et al. (72) improved the DNAzip approach by entropy-encoding the distances between adjacent
SNPs. The distribution of these inter-SNP distances was parametrically fit to a double power law
distribution (qualitatively similar to the distribution of mobile phone call durations, file sizes on
a hard drive, and the number of friends on Facebook). It is an open question what evolutionary
dynamics produced the observed power law distribution [several authors (73, 74) have suggested
a role for long DNA duplication events].

These two proposals rely on a database of SNPs [dbSNP (75)] and further assume that the
mapping from the target to the reference is given, which limits their practicability. Nevertheless,
they set a high performance benchmark for whole–human genome compression.

For that reason, state-of-the-art reference-based compressors use only a reference genome
(usually of the same species as the genome to be compressed, although not necessarily) as side
information. HiRGC (76), iDoComp (77), GeCo (78) and GDC (14, 79) are currently the best-
performing algorithms, with HiRGC and iDoComp being slightly ahead of the others in terms
of overall compression ratio when the used reference is from the same species as the genome to
be compressed (76, 80). In particular, they can compress a human genome of 3.1 GB to around
6 MB. The main advantage comes from a good modeling of the differences encountered between
two genomes of the same species. This modeling is then fed into the compression mechanism,
which exploits it to achieve better compression ratios (76, 77). This demonstrates the importance
of modeling for compression.

In terms of compression/decompression speed, GDC and HiRGC achieve impressive results,
followed by iDoComp and GeCo, the latter being significantly slower. For example, iDoComp,
GDC, and HiRGC employ generally less than 10 s for both compression and decompression of
small genomes (e.g., Saccharomyces cerevisiae, with 12.1 million base pairs), and about 2 min for
human genomes.

Note that the above discussion focuses on compression of a single genome (given a reference),
rather than a collection of them.Algorithms in this category can be seamlessly applied to the latter
case by selecting just one genome and using it as the reference for the remaining ones. However,
better compression is expected from algorithms specifically designed to deal with a collection of
genomes.This is the case with FRESCO (24),GDC-ultra (14), andGDC 2 (79), the latter offering
the best compression ratios, about four times better than the other two. In particular, GDC 2 is
able to compress a collection of 1,092 human genomes, which occupies 6.7 TB uncompressed,
to a mere 700 MB (with a speed of 200 MB/s). This corresponds to a reduction of 9,500 in size,
which translates to an average of less than 700 KB per genome. The key to high compression is
to look for similarities across the whole collection, not just against one reference sequence, hence
exploiting the high redundancy existing in the data.

6. COMPRESSION OF GENOMIC VARIANTS

Large-scale projects involving the study of thousands of samples are becoming increasingly
common, with some famous initiatives being the 1,000 Genomes Project (1KGP) (81) and
the 100,000 Genomes Project (https://www.genomicsengland.co.uk/the-100000-genomes-
project-by-numbers/). These projects deliver data in the form of VCF files (7), that is, each
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sample is represented in the form of the variants identified with respect to a reference sequence,
instead of the corresponding assembled genome. In addition, the scale of current projects such as
the Haplotype Reference Consortium (HRC) (82) or the Exome Aggregation Consortium (83) is
growing by an order of magnitude. For example, the VCF files of the HRC occupy 4.3 TB and
consist of almost 65,000 sequences.

These files are intensively searched to retrieve the variants (the genotype) of a given sample, as
well as to retrieve all samples containing a specific variant or set of variants. Hence, solutions for
efficient representation of these data should offer random access capabilities. In addition, much
larger databases are expected in the near future, and they should be scalable with the number of
samples.

One of the first attempts at compression of these files was TGC (thousands genome compres-
sor) (84), which was able to compress a collection of 1,092 human genomes (comprising a total
of 40 million variants) to about 400 MB, which corresponds to less than 400 KB per genome on
average. Although TGC is currently the best algorithm in terms of compression ratio, it does not
support queries on the data, limiting its practicality. GTRAC (genotype random access compres-
sor) (85) was proposed as an extension of TGC, offering random access in both the samples and
the variants dimensions. In particular, the genotype of a sample can be retrieved in about a sec-
ond, and the samples containing a specific variant in tens of milliseconds. The cost of fast query
retrieval is that GTRAC’s compressed size is about two times that of TGC. After GTRAC, other
solutions providing some type of random access were proposed, such as GQT (86), BGT (87), the
SeqArray library (88), and GTC (89). Among those, GTC is considered the current state-of-the-
art algorithm for compressing the genotype information contained in VCF files, since it offers the
best compression performance while providing selective access to the compressed data over both
the samples and the variants dimensions. In particular, GTC is able to compress the collection of
1,092 human genomes to 600 MB. Similarly, a collection of 2,500 human genotypes from 1KGP
phase 3 containing about 85 million variants was compressed from 853 GB (uncompressed VCF
file) to 1.8 GB, and a collection of about 27,000 human genotypes from the HRC was compressed
from 4.3 TB to a mere 4 GB,which corresponds to less than 150 KB per genotype. Finally, queries
for single variants are done in milliseconds, and for single samples in a few seconds.

As expected, increasing the number of samples to be compressed decreases the average size
needed to represent a single sample (and therefore a genome). An interesting question that arises
is,What is the ultimate limit of genome compressibility? For example, assuming that there are 80
novel mutations from parents to child (at the upper range of estimates, reviewed in Reference 90),
the space to encode the positions of these variations—with both parents’ genomes available as a
reference—is at most1 G ∗H (80/G) = 266 bytes, whereG ≈ 3 ∗ 109 is the human genome length
and H (p) = −p log2(p) − (1 − p) log2(1 − p) is the binary entropy function. Assuming all of these
mutations are substitutions, it takes log2(3) ∗ 80 = 16 bytes (since each base pair can change to
one of three other possibilities) to describe the mutated nucleotides. There is also on average one
recombination event per parent chromosome (91), so assuming a recombination probability of
1/L at each position in a chromosome of length L, an upper bound to describe the positions of the
recombination events is 2

∑23
i=1 Li ∗H (1/Li ) = 163 bytes, where Li is the length of chromosome

i and the factor of 2 accounts for both parents. Finally, it takes 23 bits per parent, or about 6 bytes
for both parents, to determine which of two homologous chromosomes is passed onto the child.
The above numbers add up to about 450 bytes per human genome encoded with respect to both
parents’ genomes.

1This assumes that the 80 novel mutations are uniformly randomly positioned in the genome. Deviations
from this assumption would reduce the space required, since the uniform distribution maximizes entropy on
a finite set.
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As shown above, current work focuses on compression of genotypes only. Future extensions
should include compression of the metadata (variant annotations) stored in the VCF files, such
as the genotype quality, the read depth, or the allele frequency, among others (for a detailed
description, see https://samtools.github.io/hts-specs/VCFv4.2.pdf ). This information may
be important for analysis, for example, to filter the variants based on quality. Quantization of
these values could be possible, but it should be done guaranteeing no significant degradation of
the output of the applications that use these data.

7. THE FUTURE OF OMICS DATA FORMATS AND COMPRESSION

As demonstrated above, the current situation calls for methods that can efficiently represent the
genomic data. As such, the research community has devoted a significant effort to designing spe-
cialized compressors for the raw and aligned sequencing data, as well as the assembled genomes
(including their representation in the form of variants with respect to a reference genome). Fur-
thermore, compression can speed up the analysis of different computational biology methods (92–
94). For example, Loh et al. (92) showed how redundancy in biological data can be exploited by
compressing sequence data in a way that allows direct computation on the compressed domain,
and Yu et al. (93) added further structure with fractal dimension, introducing a new framework
for accelerated similarity searches.

In spite of this, genomic data are still largely stored using compression algorithms that perform
poorly in practice, such as gzip for FASTQ files and BAM for SAM files (although the CRAM for-
mat is starting to see some widespread adoption). The reason seems to be the availability of mul-
tiple algorithms, making the choice difficult, and the lack of performance guarantees, as most of
the state-of-the-art compressors are not guaranteed to be maintained long-term.We believe that
the latter poses the largest barrier for adoption of novel genomic data compression technologies.

Motivated by this demand, MPEG (Moving Picture Experts Group), an ISO working group
that has developed many generations of successful standards that have transformed the world of
media from analog to digital, is working with ISO Technical Committee 276/Working Group 5,
integrators of biological data workflows, to produce MPEG-G, a new open standard for genomic
information representation. The standard is expected to aid significantly in the compression, stor-
age, transmission, and processing of raw and aligned sequencing data (95).

Besides the assurance of compression ratios close to those of the state-of-the art compressors
(the technologies proposed by these compressors are part of theMPEG-G specifications, although
the first full implementations of MPEG-G codecs are yet to come), the MPEG-G standard will
support features associated with sequencing data that are currently partially or not supported by
existing formats. Notable use cases to be addressed by MPEG-G include (a) selective access to
compressed data according to several criteria, (b) genomic studies aggregation, (c) enforcement of
privacy rules, (d) selective encryption of sequencing data and metadata, (e) annotation and linkage
of genomic segments, and ( f ) incremental update of sequencing data and metadata, among oth-
ers. Furthermore, interoperability and integration with existing genomic information processing
pipelines will be enabled by supporting conversion from/to the FASTQ/SAM/BAM file formats.
However, a broad adoption of MPEG-G would lead to downstream applications working directly
over MPEG-G files, hence improving the efficiency of queries that these applications perform on
files containing genomic data. Finally, given its ISO standard designation, it is guaranteed that a
file compressed according to theMPEG-G specifications will be accessible for life.However, with
respect to royalties, the terms and conditions of the format remain to be decided. Nevertheless,
to facilitate the broad adoption of MPEG-G, we advocate for a royalty-free license for research
purposes.
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As we advance in our understanding of biology, more weight will be put not only on genomic
data but also on other types of omics data, such as proteomics, metabolomics, epigenomics, or
transcriptomics, to name a few. As an example, we are already seeing an increase in the size
and volume of mass spectrometry data sets from proteomics and metabolomics studies (96). In
particular, the MassIVE (Mass Spectrometry Interactive Virtual Environment; https://massive.
ucsd.edu/ProteoSAFe/static/massive.jsp) repository contains more than two million files with
123 TB of storage, and the PRIDE repository (97, 98) contains around 7,000 projects and 74,000
assays. Similarly, there has been a surge of large-scale projects centered around methylation data,
such as MethylomeDB (99), DiseaseMeth (100), and MethBase (101). The ENCODE database,
for example, contains more than 800 project assays that are related to DNAmethylation, amount-
ing to roughly 10% of the total assays and occupying around 78 TB of space (https://www.
encodeproject.org/matrix/? type=Experiment).

Hence, similar to what happened several years ago in the field of genomics, other omics disci-
plines are experiencing a need for specialized compression schemes that can cope with the growth
of their specific data. As such, several compression schemes tailored to different types of omics
data have recently been proposed, such as MassComp (102),MS-Numpress (103),METHCOMP
(104), ChIPWig (105), and smallWig (106), among others. However, as in the case of genomics,
general compression approaches such as gzip are continuing to be used in lieu of better-performing
compressors.We believe the reason is again the lack of standardized formats tailored to a specific
type of omics data that address the identified needs and that are made compatible with the corre-
sponding downstream analyses.
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Errata

An online log of corrections to Annual Review of Biomedical Data Science articles may be
found at http://www.annualreviews.org/errata/biodatasci
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